Current Issue : July-September Volume : 2024 Issue Number : 3 Articles : 5 Articles
Binary mixtures of active pharmaceutical ingredients (API) are researched to improve the oral bioavailability of pharmaceutical dosage forms. The purpose of this study was to obtain mixtures of meloxicam and L-tartaric acid because tartaric acid improves intestinal absorption and meloxicam is more soluble in a weakly basic environment. The mixtures in the 0–1 molar fraction range, obtained from solvent-assisted mechanosynthesis, were investigated by differential scanning calorimetry (DSC), Fourier Transform Infrared (FTIR) spectroscopy, Fourier Transform Raman spectroscopy (FT-Raman), X-ray powder diffraction (XRD) and solubility tests. The physicochemical characteristics of the compounds obtained from DSC data reveal, for the first time, the formation of a co-crystal at meloxicam molar fraction of 0.5. FTIR spectroscopy data show the existence of hydrogen bonds between the co-crystal components meloxicam and L-tartaric acid. FT-Raman spectroscopy was used complementary with FT-IR spectroscopy to analyze the pure APIs and their mixtures, to emphasize the appearance/disappearance and the shifts of the position/intensity of vibrational bands, following the formation of hydrogen-bonded structures or van derWaals interactions, and to especially monitor the crystal lattice vibrations below 400 cm−1. The experimental results obtained by X-ray powder diffraction confirmed the formation of the co-crystal by the loss and, respectively, the apparition of peaks from the single components in the co-crystal diffractogram. The solubility tests showed that the co-crystal product has a lower aqueous solubility due to the acidic character of the other component, tartaric acid. However, when the solubility tests were performed in buffer solution of pH 7.4, the solubility of meloxicam from the co-crystal mixture was increased by 57% compared to that of pure meloxicam. In conclusion, the studied API mixtures may be considered potential biomaterials for improved drug release molecular solids....
In this study, a novel floating, controlled-release and core-shell oral tablet of ketamine hydrochloride (HCl) was produced using a dual extrusion by 3D printing method. A mixture of Soluplus® and Eudragit® RS-PO was extruded by a hot-melt extrusion (HME) nozzle at 150–160 ◦C to fabricate the tablet shell, while a second nozzle known as a pressure-assisted syringe (PAS) extruded the etamine HCl in carboxymethyl cellulose gel at room temperature (25 ◦C) inside the shell. The resulting tablets were optimized based on the United States pharmacopeia standards (USP) for solid dosage forms. Moreover, the tablet was characterized using Fourier-transform infrared (FTIR) spectrum, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and buoyancy techniques. The results showed a desired dissolution profile for a 100% infill optimized tablet with total drug release (100%) during 12 h. Weight variation and content uniformity of the tablets achieved the USP requirements. SEM micrographs showed a smooth surface with acceptable layer diameters. According to the FTIR analysis, no interference was detected among peaks. Based on DSC analysis, the crystallinity of ketamine HCl did not change during melt extrusion. In conclusion, the floating controlled-release 3D-printed tablet of ketamine HCl can be a promising candidate for management of refractory depressions and chronic pain. Additionally, the additive manufacturing method enables the production of patient-tailored dosage with tunable-release kinetics for personalized medicine in point-of care setting....
Floating controlled systems seek to extend the gastric retention time (GRT) of solid pharmaceutical forms by sustaining buoyancy in the stomach without affecting gastric emptying rates. This investigation aimed to evaluate a magnetic floating drug delivery system (MFDDS) under diverse physiological conditions (pressure and viscosity) using an Alternating Current Biosusceptometry (ACB) system by conducting assessments in vitro and in vivo. For in vitro experiments, MFDDSs were placed under different pressures (760, 910, and 1060 mmHg) and viscosities (1, 50, 120, and 320 mPa·s) for evaluation of floating lag time (FLT). For in vivo experiments, eight healthy volunteers participated in two phases (fasting and fed) for gastric parameters (GRT, FLT, and OCTT—orocaecal transit time) assessment, employing the ACB system. The results indicated that pressure, viscosity, and FLT were directly proportional in the in vitro assay; in addition, increases in the OCTT (fasting = 241.9 ± 18.7; fed = 300 ± 46.4), GRT (fasting = 139.4 ± 25.3; fed = 190.2 ± 47.7), and FLT (fasting = 73.1 ± 16.9; fed = 107.5 ± 29.8) were detected in vivo. Our study emphasizes that the ACB system is a valuable technique, and it is capable of tracking and imaging MFDDS in in vitro and in vivo experiments....
Three-dimensional (3D) printing is quickly being adopted in pharmaceutics due to the many advantages it offers, including treatment, adaptability, the reduction in waste and the accelerated development of new formulations. In this study, micro-extrusion printing was implemented for the production of modified-release hydrocortisone (HCT) mini-tablets for paediatric patients. For the developed formulations, Gelucire® 44/14 and Precirol® ATO 5 were used as the main inks at three different ratios: 70%/30%, 60%/40% and 50%/50%, respectively. The printing parameters (temperature and pressure) were altered accordingly for each ratio to achieve printability. The printed mini-tablets exhibited excellent printing quality, featuring consistent layer thicknesses and smooth surfaces. Dissolution tests were performed, and the results indicated a successful modified release of HCT from the mini-tablets. In summary, micro-extrusion exhibited favourable processing abilities for powder blends, facilitating quick printing and the fabrication of potential personalized dosages....
Natamycin is a tetraene polyene that exploits its antifungal properties by irreversibly binding components of fungal cell walls, blocking the growth of infections. However, topical ocular treatments with natamycin require frequent application due to the low ability of this molecule to permeate the ocular membrane. This limitation has limited the use of natamycin as an antimycotic drug, despite it being one of the most powerful known antimycotic agents. In this work, different lipidic nanoformulations consisting of transethosomes or lipid nanoparticles containing natamycin are proposed as carriers for optical topical administration. Size, stability and zeta potential were characterized via dynamic light scattering, the supramolecular structure was investigated via smalland wide-angle X-ray scattering and 1H-NMR, and the encapsulation efficiencies of the four proposed formulations were determined via HPLC-DAD....
Loading....